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Abstract. Quasiperiodic (QP) small-amplitude patterns are studied in a scalar field theory with
quadratic nonlinearity. QP solutions of the class in interest are found as a projection of strictly
periodic solutions of an associated 4D problem onto an ‘irrationally oriented’ 2D subspace. The
periodic solutions of the 4D problem are constructed using a version of the method of asymptotic
expansions. The analysis reveals complex patterns. In particular, there exists a one-parametric QP
pattern with strict 12-fold symmetry, which contains infinitely many local patches with approximate
5-fold symmetry. In limit cases, the complex patterns transform into a simple pattern: a close pack
of hexagonal cells. In certain resonance cases there exist patterns consisting of alternating pieces
of close cell packs with either hexagonal or quadrangular symmetry. The relation between the
12-fold and 5-fold approximate symmetries is discussed.

1. Introduction

When one develops a theory that has to describe evolution processes in nonlinear media
involving phenomena of self-organization, form creation, or ‘order—chaos’ transitions, there
always arises the question: which is a variety of structures and forms admissible by one
or another nonlinear field model? Even for simple models with spatially multidimensional
nonlinear field distributions this question may be answered only after analysing the structure
of stationary solutions.

What structures are encountered in nature and thus should be described by a theoretical
model? Invarious nonlinear media one typically observes simple patterns, which are associated
with strictly periodic nonlinear wave lattices with certain symmetry. Such patterns exist, for
instance, in a vortex lattice in a stationary flow of an ideal liquid [1], in a lattice of optical
filaments in nonlinear optical media [2, 3] etc. For corresponding models, it is necessary to
investigate the bifurcations of solutions of the nonlinear field equation (when a small-amplitude
wave lattice arises on the background of the uniform field distribution) and to study the evolution
of such small-amplitude lattices as the characteristic amplitude (the norm of the solution) is
varied.

But, together with analysing spatially multidimensional patterns that correspond to an
ideal wave lattice, it would be important to learn how to describe its posddflects Such
defects can be associated with local patches that Heferent symmetry In our opinion,
the description of patterns with such defects may be related with a bifurcation analysis of
small-amplitudequasiperiodiq QP) stationary solutions of model equations.
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The problem of construction and analysis of QP patterns has been actively discussed in the
physics of nonlinear phenomena during the last two decades. We only mention two of many
fields where such patterns have been found: crystallography [4—7] and the studies of Faraday
capillary ripples [8, 9].

A substantial new impetus has been given by Arnol’d, who revealed [10, 11] an intriguing
and fascinating relation between, on the one hand, QP patterns in Hamiltonian systems of a
certain class and, on the other hand, purely geometric Penrose constructions (non-periodic
coverings of the plane by ‘Penrose tilings’) [12—14].

However, neither a systematic study of complex stationary solutions which arise in simple
fundamental nonlinear field models, nor a determination of conditions under which local
patches with nontrivial symmetry could arise in patterns of those solutions have been fulfilled
yet.

In this paper we analyse small-amplitude QP field distributions for the nonlinear scalar
field described by the equation

uxx+uy_\,+u+su2=0 (x,y) € R2 (2)

This model describes, for example, stationary flows in the fluid with the given law of
vorticity [15].

The technique of obtaining QP solutions of (1) is as follows. We consider the following
equation inR*:

d 3\ d 3\ ) .
<k1— +k3—> u+ <k2— +k4—) u+tu+eu =0 (01, ...,02) ER (2)
dp1 d¢3 ¢z 04

whereks, ..., ks are real numbers. Note that the gk} is often treated as a vector that
specifies a 4D wave lattice. Equation (2) arises when we introduce a 4D space of variables
{o1, 92, @3, pa} and treat them as dependent on the original variables ¢; = ¢;(x, y);
namely, we define them as follows:

@1 = kyx @2 =koy @3 = kax @4 = kay. ®3)
Then

LI U R R

0x ~ 0x 0@, 01 dp3
and

d Jdp; 0 a ad

— = ﬂ_ = k2_ +kg—

dy = 3y 99; dp2 04
Thus, if any functionu (¢, . . ., ¢4) is a solution of equation (2), then, using relations (3), one

obtains a corresponding solution of the basic equation (1). In other words, a solution of the
latter can be treated agrojectionof the 4D solution of equation (2) onto tke, y)-plane; this
projecting is performed by restricting thg to g3 = i—jgol, 04 = %‘/’2 and puttinge = ¢1/k
andy = @/ ko.

We will consider a class of 2D solutions of the basic equation generated by 4D strictly
2m-periodicin ¢y, . . ., ¢4 Solutions of equation (2):

Generically, 2D solutions of that class are QP functions ahdy.

Thus, the problem of finding QP solutions of equation (1) is reformulated as a problem of
finding 2r-periodic solutions of the ‘extended’ 4D equation (2) followed by projecting these
solutions back onto thér, y)-plane by means of relations (3).
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Of course, this way of finding QP solutions is not unique. But it has a substantial attractive
feature: it directly follows the same logic as used by Arnol'd and other authors, who obtain
QP tilings of the plane as projections of cells of a multidimensional periodic lattice that are
intersected by an ‘irrationally oriented’ section plane, onto this plane. Aswas shown by Arnol’d
(see, for instance, [10]), the analysis of dispersion relations in the space of wave némbers
may establish reasomghylocal patches with nontrivial symmetry arise.

There exists another reason to develop the above scheme of constructing QP solutions:
such solutions can be expanded along a QP basis, which can also be built following the same
procedure. Actually, for the Laplace operatoiA one can consider the eigenvalue problem
in the class of QP functions that are projections of periodic functions of phase variables [16].
The number of phase variables to be introduced is not prescribed. For example, in [16] we
study bases of functions built on a 2D wave lattige, k2): ¢1 = kix, 2 = kpy. In this
case, the quasiperiodicity of the basis functions (modes) is related to an infinite (but countable)
degeneration of eigenvalues of the Laplace operator w.r.t. the parameters of the wave lattice.
Sometimes, one says that such QP modes are defined on a foliation of a family of tori in the
phase space (as linear envelopes of corresponding periodic solutions).

As to 2t-periodic solutions of the 4D equation (2), they are constructed in the form of
asymptotic expansions fer« 1. To that purpose we will use a generalization of the approach
presented in [17]; it can be viewed as a development of the multi-scale expansion methods
(exposed, for instance, in [18]).

The paper is organized as follows. In section 2 we define asymptotic expansions of QP
solutions and consider the zero order. First order is analysed in section 3; one- and two-
dimensional spatial resonances are discussed; the example of 2D resonance QP pattern is
studied. QP solutions in the case of 1D resonance are analysed in section 4. In conclusion we
discuss a possible generalization of our approach to QP patterns in nonlinear field models. An
appendix presents a simple analysis of nontrivial symmetries in the 2D resonance QP pattern
obtained in section 3.

2. Asymptotical expansions: zero order

Let us look for solutions of (2) and componefisof the wave lattice vector in the form of
power series im:

(91, 2, 93, 9a) = Y _ "1 (91, 2, 93, Pa) (5)
n=0
kj=_ "k ji=1,2234. (6)
n=0

Substituting these expressions into equation (2) generates a chain of linear inhomogeneous
equations:

Louo = (DZF1? +[D51 + Duo =0 (7
Lous = —u3+2(DY DY + DY) DS yug (8)
Louz = —2uquy — 2(DY D3 + DX DZYuo — ((DF1? + [DSF1P)uo

~2(Di3 Dy + Dy Dy us ©
and so on. Here we denoted

D& = w0 O DY = g e 9 (10)

Ldpr ® dgs 2 3pp  * des
Now we dwell on the equation of zero order (7). Studying this equation, for the sake of
brevity, let us writek; instead oﬂcjo).
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Let us consider a class of solutions of (7) that (a) arep2riodicin ¢; (j = 1...4) and
(b) are projected ontevenboth inx andy 2D functions (by means of formulae (3)).
In that class, it is natural to seek solutions of (7) in the form
uo(@1, P2, 3, Pa) = A COSp1 COSP, COSP3 COSP4 + B SiNg1 COSp, SiNgs COSe4
+C cOoSp1 Sing, COSps Sing4 + D Sing; Sing, Sings Sing, (12)
(it is easy to see that each term in this formula is projected onto an even functionyiy).

Substituting this expression into equation (7), we find that the coefficients C, D must
simultaneously obey the following four relations:

IC(+1,+1)A(+1,+1) =0 IC(—l,—l)A(—l,—l) =0

’C(+1,—1)A(+1,—1) =0 K(—1,+1)A(—1,+1) =0 (12)
where
4
KOvoD = =N "k + 2o0kiks + 200koka + 1 o1p = %1 (13)
j=1
A(Gl’@) = A+01B +0o2C +0100D. (14)

In the most general case, only o2 (for a certain choice 061 = &, ando, = &)
vanishes;K“% = 0. Since this is a relation between tke this provides us with a
dispersion relation. Then the corresponding expressiGn®? does not vanish, while the
three other4©x°? for different s, ando, must simultaneously vanish. Analysing the four
possible cases, we see that alwgys= |B| = |C| = |D|; let all these amplitudes be equal
to 1.

After obvious trigonometry, we find that in all the four cases solution (11) and the
corresponding dispersion relation can be written in very simple form:

uy (@1, . .., ps) = COLp1 — 0193) COSP2 — T204) (1%)
FOrm (kg — a1k3)? + (ko — 02ka)? = L. (16)

Using relations (3), we see that these solutionsp2riodic in the 4D phase space) are projected
onto the solutions

U (x, y) = costky — o1ka)x COSkz — 02ka)y (A7)

which are also strictly periodic, but now in and y (with periods Z/(ky — o1k3) and
21 / (ko — o2ka), respectively).

Note now that the dispersion surfaces (16) for different p@irso,) canintersectalong
dispersion submanifolds of lower dimension. On such submanifolds different solutions of
type (15) coexist. Returning to conditions (12), we see that in such cases the coefficients
A, B, C, D must obey only two equations of the ford{*°? = 0; as a result, the general
expression (11) now includes a continuous parameter. As one might expect, such a solution
can be rewritten as a linear combination of two corresponding elementary solutions (15) taken
with arbitrary relative weight.

But, unlike the elementary solutions, which are projected onto periodic functions (17),
this combined function is (generically) projected ontguasi-periodicfunction in (x, y).

Thus, in zero order we have obtained a family of QP solutions of the basic equation (1).
They exist on a corresponding dispersion submanifold, where both elementary components
have the same wave numbegks}.

In particular, the solution

uo(@1, ..., pa) = COYp1 + @3) COLP2 + @4) + Y1 COLP1 — @3) COS P2 — P4) (18)
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which generates the 2D QP solution

uo(x, y) = Coqky + kz)x COSkz + kg)y + y1 COky — k3)x COSk2 — ka)y (19)
exists on the following dispersion surface:
4
FEDAFCED s N kR =1 kiks + koks = O (20)
j=1

and the solution
uo(@1, . . ., 9a) = COSP1 — @3) COP2 + P4) + y2 COSP1 + ¢3) COLP2 — P4) (21)
which generates the 2D QP solution
uo(x, y) = coSky — ka)x CoSkz + ks4)y + y1 COSky + k3)x cOSka — ka)y (22)

exists on the dispersion surface

4
FOLDAFCED s N k=1 kiks — koks = O. (23)
j=1

Remark. More strictly, the solutions (19) and (22) are QP almost for all valugs ekcept
for a countable set

K2 = 2 2= 1 ks=riki ks =roko
YT i —r) (A= r1r2) 27 (n—ra(1—r1r2)
r1, ro are rational (24)
for the first type of solutions (19), and
r2 ri
k2 — kz e — k = k k = k
LT ()@ ) 2= (n+rp@+rr) Tk R
r1, rp are rational (25)

for the second type (22). For suéh the solutions (19) and (22) becorsgictly periodic
in (x,y): since in these solutions the periods of the two terms in each space direction
(T = 27/ (ky +k3) andT® = 27/ (ky — ka); TV = 21/ (ka +ka) @ndT,? = 27t/ (ky — ka))
are commensurable, there exist common periods for both the terms.

Note that if the numbers,, r, are treated as arbitrary numbers then relations (24), (25)
simply give us a parametric expression for the 2D dispersion manifolds (20), (23).

Let us return to the intersection of the dispersion surfa&@é$*? and #~1~Y. Due to
the form of the relation (16), it is natural to introduce angle variables to specify the vector of
the wave lattice on this dispersion subspace. In the case of o, they can be defined as
follows:

k1 + k3 = cos¢ k1 — k3 = cosyr
k2+k4:Sin¢ kz—k4:Sinw.

Then
_ b—y p+y . dp—Y\ . (otVY

k1 = cos( > ) cos( > ) ko = cos( > ) 5|n< > ) (26)
o=\ L (bt Y (- ¢+

ks = —sm( > ) sin (—2 ) k4 = sin (—2 ) cos< > > . (27)
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The numberg; thus defined always (for aft and) satisfy the dispersion relation (20) that
arises at the intersection 81**Y and#1~2. Then the corresponding 2D QP solution can
be written in the simple form:

uo(x, y) = cog[cose]x) cog[sing]y) +y cog[cosy]x) cog[siny]y). (28)

In the case of intersection of the surfacg$’— and #-1*V the angle variables are

introduced as follows:

k1 + k3 = C0OS¢ k1 — k3 = cosyr

ky — k4 = sing ky + kg = siny.
Thenk; are also defined by expressions (26), (27) except for the opposite sign of the right-hand
side of the formula foks. The numberg; thus defined satisfy the dispersion relation (23) for
all  andvr. Note that the corresponding QP solution is the same as in the first case: it is also
expressed by equation (28).

In what follows we restrict ourselves to thgecond simplest mode defined by
expressions (21), (23) and Igt = 1. Thus, as a solution of the zero-order equation (7)
we take a symmetric combination of elementary periodic solutigis ¥ + u§ ",

Finally, let us introduce an additional notation. As is seen from expressions (26), (27),

k1 = K> c0Sx ko = K1>Sina k3 = K34C0Sf k4 = Kagsing (29)
where
K125c05<¢;¢> Kay = —sin<¢;w) (30)
_ oty T ¢ty
o@=" p=3 > (1)

So, we cantreat the numbéts k, as components of the 2D wave ‘subvector’ thatis a projection
of the full 4D vector of the wave lattice onto the plaite, k,); analogously, the numbets, k4

are components of the second 2D ‘subvector’ that is a projection of the full 4D vector onto the
plane(ks, k4). Note that

K% +K2 =1 B+a=m/2. (32)

3. Asymptotical expansions: first order. 2D spatial resonance

According to equation (8), in the next orderdang 1 the main mode (21), (23) generates the
following expression for the functiom (g1, 2, @3, 4):

yio L 1] cosdgi—g¢s) | COSAg1t¢s)
VT2 4|14k — ka2 1— Ak *ka)?
1[cos2py+g¢s)  cOS 2(<0z—<p4)}

4 11—4ky, + k4)2 1— 4k, — k4)2
1 [ cosdg1 — ¢3) COSApz + ¢a) . COS A1 +¢3) COS A2 — ¢a) }
4| 1—4(ky — k3)2 — Ak + kg)?2 1 — A(ky + k3)2 — (ko — kg)?
1 [ cos 2, cos 2o, . COS 2p1 COS 24 N COS 2p3 COS 2oy +cos 2p3 COS oy }
2| 1-4k2+k3) 1—4ki+ky) 1—Ak3+k3) 1—4K3+k5)
(33)

and two relations:
(ky — k) (kP — k) + (kg + k) (k5P + k) = 0

(34)
(k1 + ko) (kT +k5™) + (k2 — ka) (kg — ky™) = 0
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which arise as a result of eliminating secular terms in the right-hand side of equation (8). In
the spacé€(k1, ko, k3, k4)} these relations define a 2D manifold of admissible variations of the
4D vector(ky, k2, k3, ks), which belongs to the 2D manifold (23). This becomes evident if we
rewrite relations (34) in the following form:

kik® + kD + kD + gk P =0 kakD + kaklY = kakSD + kokD. (35)
Expression (33) for the functiam, provides the following two types of small divisors:

(D: (kaFk)?=3  (atka)®=3 (36)
(In: kK+k=1 kZ+ks =13 k3 +ks =13 k3 +kf =13 (37)

The first type of small divisor may be related with inner 1D spatial resonances (since the

projection of the resonance term is a function of one space variable only: either),

whereas the second type may be related with inner 2D spatial resonance (since the projection

of the resonance term is a function of both the space variables) of waves in nonlinear media.
Let us first consider the 2D resonance related with the small dikfser = ;. It may

occur if thethreedispersion manifolds intersect:

4
K*=Y"K=1 kaky = koks K +kS =1 (38)
j=1

This intersection takes place on a 1D resonance manifold in the 4D §@ack, ks, k4)}.
To eliminate that small divisor, let us redefine the zero approximation:

ilg = ug + p COS dp; COS 2p5. (39)

Herep is a parameter (magnitude of the resonance mode), which will be defined below. The
change (39) leads to the following equation for the first approximation:

Loiiy = —u} — 2puq C0S 291 C0S 25, — 3 p?(1 + €OS 4oy + COS 4o, + COS 4oy COS 4py)

+2(D\9 DY + DY DS (uo + p cos 21 OS 2py). (40)
In the right-hand side of this equation secular terms (proportiona} #nd cos 2, cos ;)
can be produced by the term$ and puq cos 2p1 cos 2p;:

u§ = 3C0S1COSAp + - - pUgCOS 21 COS A = pug+---. (41)

Elimination of these terms gives us three relations, which include the magnitude of the
resonance mode:

(kn — ka) (kY — k§2) + (kg + ka) (kP + k) = 2
(ky + ka) (kY + k§P) + (ko — ka) (ks? — k) = Lp “2)
1
kk(D + koky? = ——.
1kq 2Ko 16/0

Then the solution of equation (40) takes the form
, 1, 1, cosdp cos 4p, COS 4p1 COS 4,
Wp=iy— 5P —5p >t >t 2 2
2 2 1— (4k1)?> 11— (dk2)? 1— (4k1)? — (4kyp)

1 [ codg; — ¢3) COY3p2 — @a) N CoS(¢1 + @3) COS3p2 + ¢4) }

2 |1— (k1 —k3)® — (Bka — ka)?> 1 — (k1 +k3)? — (ka2 + ka)?
COS3p1 — ¢3) COSP2 — ¢a)  COS3p1 + ¢3) COS@ + pa) }

1— (Bk1 — k3)? — (ko — ka)®> 1 — (3ky +k3)? — (ko + ka)?
1| cog3¢1 — ¢3) COL3p2 — @a) N COS(3p1 + @3) COY3p2 + ¢4)
2 |1— (3ky — k3)® — (Bkp — ka)> 1 — (3ky +k3)? — (Bkp +ka)? |~

(43)
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Hereuw is determined by formula (33) where the term with the eliminated small divisor should
be omitted.
Using the notation introduced at the end of the previous section, we find that

V3 V3

ki = 1 cosa kp = 3 sina ks = - sina kg = - cosa. (44)

on the resonance manifold (38). Then the 2D solution obtained as a projection of the
renormalized 4D resonance mode (39) can be written as follows:

ugS(x, y; @) = cos[cos<a + %)] x cos[sin (a + %)] y

+ cos[cos(a — %)] X cos[sin (a — %)] y + p cos[cosa] x cos[sina] y.
(45)

It is QP w.r.t. bothx andy up to a countable set of exactly periodic 2D solutions that are
specified by the condition

V3tana = r (r is a rational number (46)
Note also that this solution has a parametgr (n expressions (29), suppose that
Kip= K% +eK) Ka= K3, +eK) (47)
o =a®+ea® B=pB0+ep?® (48)
then we can write relations (42) in the form
1
@ @ @
kaky” +koky' = 3 K75 = 160
@ w_ V3 @ _1 1 (49)
k3k3 +k4k4 = 7K34 = E (,0 — %

BV — o

These expressions explicitly show that the variations of the modules of the 2D v@gtdrs
and(ks, k4) are specified by the paramejefthe magnitude of the resonance mode), whereas
the difference8 — « does not depend on it: in the first ordersirg 1

,3—0(:,30—010:%—2050. (50)
Considering the location of small divisors in expressions (33) and (43) with respect to the
resonance manifold (38), it is easy to prove that their coincidence occurs for the following
values ofu:

V3tana = 0, 1, £1, £3, +o00 (51)

which are associated with solutions that either are strictly periodic w.ahdy, or represent
a degenerate cask(= k3 = 0,k1 # 0,kg 0 0rky = kg = 0,k2 #£ 0, k3 # 0).

Note also that the 2D resonances wjte= 1, j' = 2 andj = 3, j/ = 4 are equivalent in
the sense of pattern topology.

Now we describe how the QP 2D resonance soluiigtix, y; «) (45) transforms as the
parametet: varies. Letp = 1. Ata = 7/6 the solutionug® has a simple pattern: a regular
lattice with hexagonal symmetry.

In the ‘'symmetric case’ (at = 7r/4) this function can be written in the form

u(§, n) = cog§) cogn) + cogS1§) COKS2n) + COKS28) CO(S17)

=\/§2+1 Sz=\/§2_l £=xv2 nEy«/E.

(52)

1
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Figure 1. The QP 2D resonance solutiom & 7/4). Three squares selected in the pattern are
drawn in detail in figures 2)—(c).

Its pattern is characterized by the global symmetry axis of 12th order w.r.t. the origin (figure 1).
Since the function is QP, this pattern must approximately reproduce itself w.r.t. infinitely many
points of the plane; this is illustrated in figure 2.

At the same time, in the relief off® there are distinct local patches with approximate
order-5 symmetry. To recognize such fragments clearly, we introduced the following gradient
dynamical system:

8ures ) 3 res
;= 2o y=— Ug
dax dy

and numerically found stationary points and lines of transition from local minima and maxima
to saddle-type points. This decoration of the pattern proved both a nontraditional symmetry
of its fragments and revealed analogues of the Ammann lattice [6, 11].

Moreover, it occurred that around the points where the initial pattern with order-12
symmetry is almost reproduced there always exist areas inside which the order-5 symmetry
evidently prevails. A simple analysis of the interference between the symmetries of 12th and
5th order in the function (52) is presented in the appendix.

Finally, let us describe the behaviour of the patternjb < o < 7/4. Asa begins
moving fromzr /6 (the simple hexagonal lattice), on the background of this pattern there arises
another lattice; its cells have the same symmetry but much larger size. With further growth
of « this second lattice shrinks; the boundaries of its cells deform and gain their own inner

(53)
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Figure 2. QP almost-replication of the patterra) (The
pattern with exact 12-fold symmetry around the origin.
(b), (c) Two domains of the plane (see the two right-top
squares in figure 1) where this pattern is approximately
reproduced with different exactitude.

structure. This process is illustrated in figure 3. dwvaries fromn /4 to 7/3 the inverse

scenario takes place.

4. 1D spatial resonance

Consider another case: a 1D spatial resonance, which is generated by the small divisor
k9 — k)2 = ;11 in (33) (a 2D projection of the resonance term c@gs2— ¢3) is actually

a function ofx only). The associated 1D resonance manifold in the 4D sfiagek,, ks, ka)}

is specified by the intersection of the three dispersion manifolds

K+k3+k2+k5=1 kaky = kokg (k1 — k3)? = 1. (54)
As before, to eliminate that small divisor, we redefine the zero approximation:

lig = ug + p COS A1 — ¢3).

(55)

This substitution leads to the following equation for the first approximation:
Loiiy = —u} — 2puocos Apy — 3) + 3p°(1 + cos4g1 — ¢3))
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Figure 3. Level lines for the pattern in the case of 2D resonance on the stage of two overlapping
hexagonal patterns with different spatial size= 63°).

—2(Di3 Di3 + DY D) (uo + p COS Ay — ¢3)). (56)
In the right-hand side of this equation the temjsandpuo cos d¢; — ¢3) are secular
(proportional taug and cos 2p1 — ¢3)):
uf = 3CoSAp1—g3) + - - 1o COS Ap1—¢3) = 3 COSP1—¢3) COPotqs) + -+ -.
(57)
Elimination of these terms also gives us three relations:
(k1 — k) (k" — k3) + (ko + ka) (k5" + k) = 3p

(k1 + ka) (k" + k") + (k2 — ka) (k. — kg”) = 0 (58)
1
ky — ka) (kY — k$P) = =
(k1 — k3)( 3) 32
Equation (56) has the following solution:
- , 1, 1, cos4py COS 4y, COS 4p1 COS 4o,
Up =ty =P =3P 2t 2t 2 2
1—(4k1)> 1—(4k2)* 11— (4k1)* — (4k2)

4 4
_ 1| coslgr — 3p3) coSlgr — ¢a) | COIBp1 — 3) COS(p2 — a)
21— (ks —3ks)2 — (ko — ka)2 1 — (3ky — ka)2 — (ko — ka)?
,.cos 31 — @3) COLP2 — ¢a)
1—9(ky — k3)2 — (ko — ka)2 |

(59)
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Figure 4. Level lines for the pattern in the case of 1D resonance: alternating pieces with hexagonal
and quadrangular packs = 2°) and stripes.

The 1D resonance manifold for this case is specified by the conditions

Kj, = cosy K3y =siny B = % -« tan(y +a) = +/3. (60)

The 2D projection of the renormalized main mode (55) is QP up to a countable set of exactly
periodic solutions selected by the conditions
tar? Yy =rir taf o = ri/rz (61)

if r1 andr; are related as follows:

E<1+r2>2:3. (62)

rp 1—/‘1

The caseg = 1, j/ = 3andj = 2, j = 4 are also equivalent in the sense of pattern
topology.

Numerically, in the case of 1D resonance the pattern also has quite a complicated structure.
Nevertheless, inthe limitcases— Oandx — 7 /6italso degeneratesinto a simple hexagonal
lattice. Asa is small, the pattern can be described as alternating macropatches that contain
close packs of elementary cells with either hexagonal or quadrangular symmetry, respectively
(figure 4). Asa grows further, the pattern becomes more complicated (figure 5).



Ny

q Loy

o 0 \/ = @Q
ool

g e
05 \05 300 50
i) 0@@%@ il
07080h L 80H L

20 Y

Figure 5. The same as figure 4, far= 10° (a developed complicated pattern).

5. Conclusions

Thus, we have shown how the method of asymptotical expansions can be modified in order
to be effectively applied to a nonlinear scalar field theory (as an example, to the model with

quadratic nonlinearity); we have analysed the first iterations of this method. We have shown
that at this stage we already obtain QP 2D patterns which include patterns with approximate
nontrivial (5-fold) symmetry.

The same approach can be applied to a scalar field theoryculitic nonlinearity. Such
a model arises in various applications; see, for example, the book [19] and references therein.

In order to construct and describe QP 2D patterns we introduce a 4D space of phase
variables and look for strictlys2-periodic solutions of the associated 4D equation in phase
variables. Such solutions are then ‘projected’ back onta the)-plane, where their images
are QP 2D solutions of the original equation.

The question of the stability of the QP patterns thus obtained lies beyond the scope of our
paper. On the general problem on stability of QP solutions we could send readers to the papers
of Moser [20] and Bridges [21], and references therein.

As we remarked in the introduction, further development in the study of QP patterns in
scalar field models may be related to a proper analysis of QP solutions of the equation

Au+Au=0 (63)
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(A is the Laplace operator iR?). This would allow us to construct a proper QP basis as a
set of QP eigenfunctions of the eigenvalue problem for this operator in the class of bounded
functions inR2. Such bases would be useful for an expansion of QP solutions of nonlinear
equations.

We have taken first steps in this direction. In particular, we have found that the main
renormalized mode in the case of 2D resonance corresponds (under certain conditions) to
one of the QP modes provided by the eigenvalue problem for the Laplace operaéy in
moreover, the pattern of this QP mode includes patches with the same nontrivial symmetry as
that main mode. This allows us to suppose that for certain models of nonlinear field (solid
state) the nontrivial topology of small-amplitude patterns is essentially determined by the
pattern topology of QP modes of thirear eigenvalue problem for the Laplace operator.
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Appendix. Interplay between approximate symmetries of 5th and 12th order in the 2D
resonance QP pattern

Consider the function (52) and its local exact and approximate symmetries in detail. This
function can be written as a sum of exponents:
12
u=Yy C,expli[kx +ky]) C, =1 (64)
n=1
where(k{", k(") are coordinates of 12 points in the plane of wave numbers; these points lie
on the unit circle and are equally spaced:

27 27
() = _ + () =i _— +
k} cos[ 24 (2n 1)} ky sin [ 24 (2n 1)} . (65)

If the original pattern is rotated by the anglearound the point0, 0) in the plan€{x, y},
then its Fourier image (the set of 12 points) is rotated by the same angle around the point
(0, 0) in the plan€lk,, k,}, andvice versa Since the set (65) maps onto itself if rotated by the
angleg = 27/12 and all the points have equal ‘weigh;,, the pattern possesses tact
symmetry of 12th order relative the origif, 0).

The quasiperiodicity of function (52) implies that this pattern must reproduce itself with
various accuracy in the vicinity of infinitely many points in the plgwey}. This phenomenon
is illustrated in figures Z)—(c). On the other hand, as is clearly seen in these figures, there
exist many domains with apparent symmetry of the 5th order.

Let us try to analyse the ‘interference’ between the ‘far’ symmetry of 12th and ‘near’
symmetry of 5th order (figures 1 and 2 bear witness that these two symmetries prevail in the
pattern).

Shift the origin of coordinates to an arbitrary point with polar coordinéateg). In the
plane of wave numbers this procedure changes wei@hts. ., C1»; they become complex:

C,=— C,=C, exp(ir cos[%@n +1) — ¢>D (66)

but the location of each point (65) remains intact. Fix the direction of the shift (the ahgle
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At the point(r, ¢) we introduce local polar coordinatég, t); then
13 . 21 . 2
u(R, )= ; exp<|r cos[ﬁ(Znﬂ) — qﬁD exp<|R cos[ﬁ(z;ﬁl) - rD . (67)

Let us demand that the patterrmpproximately turns into itself being rotated by the angle
At around the pointr, ¢). Such a rotation is accompanied by the rotation of all 12 points in
the Fourier plangk,, k,} by the same angle. Hence, we can suppose that the following two
conditions are essential for a realization of some (local or global) symmetry of the pattern:
(A) the set of 12 equally spaced points on the circle must map onto itself with good accuracy

being rotated by anglar around the origin;
(B) the weight of each point must be approximately equal to the weight associated with its

‘image’ under the above rotation.

This means that each of 12 terms in (67) must map onto another term with more or less
accuracy:

. 2 . 2
exp(w cos[ﬂ(an +1) — ¢D exp<|R cos[ﬁ(an +1) — TD
~ exp| ir cos 2—”(2;12 +1)—¢ | )exp|iRcos 2—”(an +1)—1t—A1 (68)
24 24
ny = no(ny, At) ni=1,...,12
Itis natural to relate possible valuesat (possible types of symmetries) with the solvability
of 12 approximate equations:

2 2
R {COS|:2—72(2711 +1) — r] - COS[Z_Z(ZHZ +1) —1— Ar“ ~0
ny = no(ny, At) ni=1,...,12
which express condition (A). There exist two cases:

o the expression in the curly brackets vanisbteactly then the value oR is not important,
so the symmetry can be global (or, at least, ‘far’);

o this expression vanishes ordpproximatelyin this case the left-hand side of (69) can be
made small if one requires smallnesskof

Rewrite the left-hand side of (69) in the form

(69)

2 2112

The first case corresponds to the anglas= %M, np—ni=M;M=12,3,4,6 (these
angles are associated with symmetries of 12th, 6th, 4th, 3rd and 2nd orders).
The second case works if we taker = 47 /5. Really, compare this rotation with the
rotation of the 12 points by the angleb2r /12 (i.e., the shift by 5 points along the circle):
5271 47 b4 1
12 5 30 <
So we can suppose that the cage- n; = 5 can also be associated with a symmetry of the
pattern (52) (obviously, it is the 5th-order symmetry), but this symmetry can be local only.
Now turn to condition (B) (approximate equality of the ‘weights’, which is necessary for
a good reproduction of the pattern upon rotation by the angle As follows from (68), this
condition can be written in the form

2i [G(n1) — G(ny+ M)] ~ N(ny) € Z
T

G(m) ECOS[%(ZM+1)—¢:| np=1,...,12

1(2 1(27
—2Rsin—{1—7;(n1+n2+1)—2t—A7:} sin= {—(nl—n2)+At}. (70)

(71)
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Table Al.
P 0o N1 N2 N3 r X = r/\/i Xcorr Xnum
2 1 3 4 1 V4 8.88 9.48 9.57
5 3 8 11 3 1z 26.66 26.14 26.15
7 4 11 15 4 16 35.54 35.71 35.73
19 11 30 41 11 A4 97.74 97.62 97.61
26 15 41 56 15 60 133.29 133.34 133.34

Solving these 12 equations provides a set of coordingie®;) of the ‘approximate
symmetry’ centres (the order of the symmetry is determined by the valug-ef:1, which is
found on the first step).

As an example, let us search for symmetry centres that lie on the kner /4. Note that
if equations (71) are solved for some point, /4), then these equations are thus solved for
all 12 points of kind(r*, ¢,, = 2 (2m + 1)).

Let us start with the 5th-order approximate symmetiy (= n; + 5), for which
G(n1) — G(ny + 5) takes one of six possible valuegt 5= V341 iﬁT*Z, +1/2}. Thus, twelve

conditions (71) are reduced to three approximate equatlons for the continuous vaaable
three integergNy, No, N3):

3+1 2 3+2 2 1 2
\/_ ~ —T[N]_ f ~ —nNz - X —jTNg. (72)

2 r 2 r 2 r
The solvability of this system is directly related to an approximation of the irrational number
/3 by rational ones. Let/3~ P/Q, P, Q € Z. Then the solution of the system (72) has
the form

Ni=P+0Q N, =P +2Q N3=Q r=4rQ. (73)

As rational approximation®/Q let us take a sequence of so-called ‘convergents of a
continued fraction’, which are generated when the expansiaf&ihto a continued fraction

V3=1+1/A+1Q+1YA+12+1A+YQ2+---

is cut at subsequent levels:

28187 /3 (74)
Corresponding values @1, N2, N3, andr are presented in table Al.

Note that the above rational approximations are not unique; for example, Bice
3/+/3, the numbek/3 can be approximated by rational fraction@ /3P with the sameP, 0
as above.

Itfollows from (66) that, as varies, each weight coefficie@, moves in the complex plane
along the circle with constant ‘velocity’, which dependsmnLooking at the mapping (68)
and equation (71) we see that for the values pfesented in the table the phase differences
betweenC, and C,.s simultaneously (i.e., for all 12 such pairs) become very closerto 2
(multiplied by the integer#Vy, N,, or N3).

Numerical analysis proves that all the poirits¢/4) with r taken from above table
coincide (with very good accuracy) with centres of patches that are associated with the
symmetry of 5th order (compare valueswof= r/+/2 with numerical values of this coordinate
xnum, See also figures 1 and 2); the larger &teD, the better is our evaluation of coordinate
of the corresponding symmetry centre.
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In the case of 12th-order symmetry expressi6iis;) — G (n1 + 1) take one of six values:
{:I:ﬁT*l, ﬂ:@, :I:%}. In this case we get the following three approximate equations:

V3-1 2n 2-V3 2n 1 27
~—DN ~ —N; -~ —Ns. (75)
2 r 2 r 2 r
Substituting the rational fractioR/Q, P, Q € Z for /3, we find
N]_:P—Q N2=2Q—P N3=Q r=47TQ. (76)

Thus, we have encountered an intriguing fact: the points of the glapé¢ that were found as
probable centres of the approximate 5th-order symmetry are at the same time probable centres
of the approximate 12th-order symmetry. Which symmetry ‘wins’?

Let us suppose that it is the symmetry for which the weight coeffici@ntre reproduced
better upon rotation by angler212- (n, — n); formally, it is the symmetry that minimizes the
average deviation of an argument of the weight coefficient divided by #om an integer:

1 &2 .
o= 1—22 |5 (G = Gnz)) = int[ (G ln) = Glna) | (77)

where int[ ] means taking the nearest integer.

So we should compare the average deviatidar the 5th- and 12th-order symmetries.
Before we proceed, note that the coordinate$the ‘symmetry centres’ that were calculated
above contain an additional error related with the rational approximations used instead of exact
V3. To evaluate the deviationwith proper accuracy, we should try to reduce the deviation
taking into accountthis error. Lé&t = A(P, Q) be an errorinthe coordinatefthe symmetry
cent:siA =r —4r Q, and lets = §(P, Q) be an error of the rational approximation-B:
§=+3-L.

Calculating the deviatiorz for each equation in the triplets (72) and (75) in linear
approximation w.r.tA ands and averaging, we find that the minimum of the average deviation
for the first case equals
® %

average™ 55 P+20 (78)

mine
A

. . 2
and is attained at min = —4mSP§—2Q.

So, we have simultaneously calculated a correction for the coordinate of the 5th-
approximate symmetry centres. It is in good accordance with numerical data: compare

the corrected valuescor = x + Amin/~/2 with the numerical valuesqm in table
Al
In the case of 12th-order symmetry we find that
Mineférage= 508 Amin =0 (79)

so any additional shift in does not allow one to reduce the deviation.
Thus, for the ratio of the deviations for the symmetries of 5th and 12th order we find:

12 0

averageN P + 2Q
so the deviation for the shift, — n; = 5 is always several times less than for— n; = 1.
Say, forQ = 3, P = 5thisratio equal%; for large number®, Q ittends to ¥(2++/3) ~ %1.
This evaluation was confirmed by our numerical analysis.
Hence, we have shown that, for not too laRyghe conditions for the 5th-order symmetry
to appear are always more ‘favourable’ than those for the 12th-order symmetry. The numerical

(80)

. (5) -
mine mine
A average/ A
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Figure Al. Local patterns with approximate 5-fold symmetry. Grapt)saqd () are the central
parts of the patterns with good ‘far’ 12-fold symmetry presented in figuigs-@).

simulation proves that at the points with small Q, where the deviation for the 12th-order
symmetry is still too large, its value for the 5th-order symmetry is already quite small; and,
really, inside domains witlR < 4 around such points we see apparent local patterns with
this symmetry (in spite of the fact that condition (A) is satisfied for angte= 47 /5 only
approximately). Such domains are the main elements generating the global pattern of our
function. At the points withP and Q large enough (actually, already fér = 7, 0 = 4)
the deviation for the 12th-order symmetry also becomes acceptably small. In such cases we
observe much larger domains with the 12th-order symmetry; and the better is the rational
approximation ofy/3, the more similar is the local pattern to the pattern around the origin
(figures 1 and 2) with exact 12th-order symmetry.

But the ratio of the deviations EwaysaboutZ, so at the vicinity of the centre of such a
pattern the 5th-order symmetry nevertheless prevails and suppresses the 12th-order symmetry!
As P and Q grow, the ‘near’ 5th-order symmetry around the centre of the local pattern with
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‘far’ 12th-order symmetry becomes more and more exact; this phenomenon is clearly seen in
figures A1@)—(d).
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