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Abstract. Quasiperiodic (QP) small-amplitude patterns are studied in a scalar field theory with
quadratic nonlinearity. QP solutions of the class in interest are found as a projection of strictly
periodic solutions of an associated 4D problem onto an ‘irrationally oriented’ 2D subspace. The
periodic solutions of the 4D problem are constructed using a version of the method of asymptotic
expansions. The analysis reveals complex patterns. In particular, there exists a one-parametric QP
pattern with strict 12-fold symmetry, which contains infinitely many local patches with approximate
5-fold symmetry. In limit cases, the complex patterns transform into a simple pattern: a close pack
of hexagonal cells. In certain resonance cases there exist patterns consisting of alternating pieces
of close cell packs with either hexagonal or quadrangular symmetry. The relation between the
12-fold and 5-fold approximate symmetries is discussed.

1. Introduction

When one develops a theory that has to describe evolution processes in nonlinear media
involving phenomena of self-organization, form creation, or ‘order–chaos’ transitions, there
always arises the question: which is a variety of structures and forms admissible by one
or another nonlinear field model? Even for simple models with spatially multidimensional
nonlinear field distributions this question may be answered only after analysing the structure
of stationary solutions.

What structures are encountered in nature and thus should be described by a theoretical
model? In various nonlinear media one typically observes simple patterns, which are associated
with strictly periodic nonlinear wave lattices with certain symmetry. Such patterns exist, for
instance, in a vortex lattice in a stationary flow of an ideal liquid [1], in a lattice of optical
filaments in nonlinear optical media [2, 3] etc. For corresponding models, it is necessary to
investigate the bifurcations of solutions of the nonlinear field equation (when a small-amplitude
wave lattice arises on the background of the uniform field distribution) and to study the evolution
of such small-amplitude lattices as the characteristic amplitude (the norm of the solution) is
varied.

But, together with analysing spatially multidimensional patterns that correspond to an
ideal wave lattice, it would be important to learn how to describe its possibledefects. Such
defects can be associated with local patches that havedifferent symmetry. In our opinion,
the description of patterns with such defects may be related with a bifurcation analysis of
small-amplitudequasiperiodic(QP) stationary solutions of model equations.
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The problem of construction and analysis of QP patterns has been actively discussed in the
physics of nonlinear phenomena during the last two decades. We only mention two of many
fields where such patterns have been found: crystallography [4–7] and the studies of Faraday
capillary ripples [8,9].

A substantial new impetus has been given by Arnol’d, who revealed [10,11] an intriguing
and fascinating relation between, on the one hand, QP patterns in Hamiltonian systems of a
certain class and, on the other hand, purely geometric Penrose constructions (non-periodic
coverings of the plane by ‘Penrose tilings’) [12–14].

However, neither a systematic study of complex stationary solutions which arise in simple
fundamental nonlinear field models, nor a determination of conditions under which local
patches with nontrivial symmetry could arise in patterns of those solutions have been fulfilled
yet.

In this paper we analyse small-amplitude QP field distributions for the nonlinear scalar
field described by the equation

uxx + uyy + u + εu2 = 0 (x, y) ∈ R2. (1)

This model describes, for example, stationary flows in the fluid with the given law of
vorticity [15].

The technique of obtaining QP solutions of (1) is as follows. We consider the following
equation inR4:(
k1

∂

∂ϕ1
+ k3

∂

∂ϕ3

)2

u +

(
k2

∂

∂ϕ2
+ k4

∂

∂ϕ4

)2

u + u + εu2 = 0 (ϕ1, . . . , ϕ4) ∈ R4 (2)

wherek1, . . . , k4 are real numbers. Note that the set{kj } is often treated as a vector that
specifies a 4D wave lattice. Equation (2) arises when we introduce a 4D space of variables
{ϕ1, ϕ2, ϕ3, ϕ4} and treat them as dependent on the original variablesx, y: ϕj = ϕj (x, y);
namely, we define them as follows:

ϕ1 = k1x ϕ2 = k2y ϕ3 = k3x ϕ4 = k4y. (3)

Then
∂

∂x
=
∑
j

∂ϕj

∂x

∂

∂ϕj
≡ k1

∂

∂ϕ1
+ k3

∂

∂ϕ3

and
∂

∂y
=
∑
j

∂ϕj

∂y

∂

∂ϕj
≡ k2

∂

∂ϕ2
+ k4

∂

∂ϕ4
.

Thus, if any functionu(ϕ1, . . . , ϕ4) is a solution of equation (2), then, using relations (3), one
obtains a corresponding solution of the basic equation (1). In other words, a solution of the
latter can be treated asa projectionof the 4D solution of equation (2) onto the(x, y)-plane; this
projecting is performed by restricting theϕj to ϕ3 = k3

k1
ϕ1, ϕ4 = k4

k2
ϕ2 and puttingx = ϕ1/k1

andy = ϕ2/k2.
We will consider a class of 2D solutions of the basic equation generated by 4D strictly

2π -periodic in ϕ1, . . . , ϕ4 solutions of equation (2):

u(. . . , ϕj + 2π, . . .) = u(. . . , ϕj , . . .) j = 1 . . .4. (4)

Generically, 2D solutions of that class are QP functions ofx andy.
Thus, the problem of finding QP solutions of equation (1) is reformulated as a problem of

finding 2π -periodic solutions of the ‘extended’ 4D equation (2) followed by projecting these
solutions back onto the(x, y)-plane by means of relations (3).
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Of course, this way of finding QP solutions is not unique. But it has a substantial attractive
feature: it directly follows the same logic as used by Arnol’d and other authors, who obtain
QP tilings of the plane as projections of cells of a multidimensional periodic lattice that are
intersected by an ‘irrationally oriented’ section plane, onto this plane. As was shown by Arnol’d
(see, for instance, [10]), the analysis of dispersion relations in the space of wave numberskj
may establish reasonswhy local patches with nontrivial symmetry arise.

There exists another reason to develop the above scheme of constructing QP solutions:
such solutions can be expanded along a QP basis, which can also be built following the same
procedure. Actually, for the Laplace operator inR2 one can consider the eigenvalue problem
in the class of QP functions that are projections of periodic functions of phase variables [16].
The number of phase variables to be introduced is not prescribed. For example, in [16] we
study bases of functions built on a 2D wave lattice(k1, k2): ϕ1 = k1x, ϕ2 = k2y. In this
case, the quasiperiodicity of the basis functions (modes) is related to an infinite (but countable)
degeneration of eigenvalues of the Laplace operator w.r.t. the parameters of the wave lattice.
Sometimes, one says that such QP modes are defined on a foliation of a family of tori in the
phase space (as linear envelopes of corresponding periodic solutions).

As to 2π -periodic solutions of the 4D equation (2), they are constructed in the form of
asymptotic expansions forε � 1. To that purpose we will use a generalization of the approach
presented in [17]; it can be viewed as a development of the multi-scale expansion methods
(exposed, for instance, in [18]).

The paper is organized as follows. In section 2 we define asymptotic expansions of QP
solutions and consider the zero order. First order is analysed in section 3; one- and two-
dimensional spatial resonances are discussed; the example of 2D resonance QP pattern is
studied. QP solutions in the case of 1D resonance are analysed in section 4. In conclusion we
discuss a possible generalization of our approach to QP patterns in nonlinear field models. An
appendix presents a simple analysis of nontrivial symmetries in the 2D resonance QP pattern
obtained in section 3.

2. Asymptotical expansions: zero order

Let us look for solutions of (2) and componentskj of the wave lattice vector in the form of
power series inε:

u(ϕ1, ϕ2, ϕ3, ϕ4) =
∑
n=0

εnun(ϕ1, ϕ2, ϕ3, ϕ4) (5)

kj =
∑
n=0

εnk
(n)
j j = 1, 2, 3, 4. (6)

Substituting these expressions into equation (2) generates a chain of linear inhomogeneous
equations:

L̂0u0 ≡ ([D(0)
13 ]2 + [D(0)

24 ]2 + 1)u0 = 0 (7)

L̂0u1 = −u2
0 + 2(D(0)

13D
(1)
13 +D(0)

24D
(1)
24 )u0 (8)

L̂0u2 = −2u0u1− 2(D(0)
13D

(2)
13 +D(0)

24D
(2)
24 )u0 − ([D(1)

13 ]2 + [D(1)
24 ]2)u0

−2(D(0)
13D

(1)
13 +D(0)

24D
(1)
24 )u1 (9)

and so on. Here we denoted

D
(n)
13 ≡ k(n)1

∂

∂ϕ1
+ k(n)3

∂

∂ϕ3
D
(n)
24 ≡ k(n)2

∂

∂ϕ2
+ k(n)4

∂

∂ϕ4
. (10)

Now we dwell on the equation of zero order (7). Studying this equation, for the sake of
brevity, let us writekj instead ofk(0)j .
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Let us consider a class of solutions of (7) that (a) are 2π -periodic in ϕj (j = 1 . . .4) and
(b) are projected ontoevenboth inx andy 2D functions (by means of formulae (3)).

In that class, it is natural to seek solutions of (7) in the form

u0(ϕ1, ϕ2, ϕ3, ϕ4) = A cosϕ1 cosϕ2 cosϕ3 cosϕ4 +B sinϕ1 cosϕ2 sinϕ3 cosϕ4

+C cosϕ1 sinϕ2 cosϕ3 sinϕ4 +D sinϕ1 sinϕ2 sinϕ3 sinϕ4 (11)

(it is easy to see that each term in this formula is projected onto an even function in(x, y)).
Substituting this expression into equation (7), we find that the coefficientsA,B,C,D must
simultaneously obey the following four relations:

K(+1,+1)A(+1,+1) = 0 K(−1,−1)A(−1,−1) = 0
K(+1,−1)A(+1,−1) = 0 K(−1,+1)A(−1,+1) = 0

(12)

where

K(σ1,σ2) ≡ −
4∑
j=1

k2
j + 2σ1k1k3 + 2σ2k2k4 + 1 σ1,2 = ±1 (13)

A(σ1,σ2) ≡ A + σ1B + σ2C + σ1σ2D. (14)

In the most general case, only oneK(σ1,σ2) (for a certain choice ofσ1 = σ̄1 andσ2 = σ̄2)
vanishes;K(σ̄1,σ̄2) = 0. Since this is a relation between thekj , this provides us with a
dispersion relation. Then the corresponding expressionA(σ̄1,σ̄2) does not vanish, while the
three otherA(σ1,σ2) for differentσ1 andσ2 must simultaneously vanish. Analysing the four
possible cases, we see that always|A| = |B| = |C| = |D|; let all these amplitudes be equal
to 1.

After obvious trigonometry, we find that in all the four cases solution (11) and the
corresponding dispersion relation can be written in very simple form:

u
(σ1,σ2)
0 (ϕ1, . . . , ϕ4) = cos(ϕ1− σ1ϕ3) cos(ϕ2 − σ2ϕ4) (15)

F (σ1,σ2) : (k1− σ1k3)
2 + (k2 − σ2k4)

2 = 1. (16)

Using relations (3), we see that these solutions (2π -periodic in the 4D phase space) are projected
onto the solutions

u
(σ1,σ2)
0 (x, y) = cos(k1− σ1k3)x cos(k2 − σ2k4)y (17)

which are also strictly periodic, but now inx and y (with periods 2π/(k1 − σ1k3) and
2π/(k2 − σ2k4), respectively).

Note now that the dispersion surfaces (16) for different pairs(σ1, σ2) canintersectalong
dispersion submanifolds of lower dimension. On such submanifolds different solutions of
type (15) coexist. Returning to conditions (12), we see that in such cases the coefficients
A,B,C,D must obey only two equations of the formA(σ1,σ2) = 0; as a result, the general
expression (11) now includes a continuous parameter. As one might expect, such a solution
can be rewritten as a linear combination of two corresponding elementary solutions (15) taken
with arbitrary relative weight.

But, unlike the elementary solutions, which are projected onto periodic functions (17),
this combined function is (generically) projected onto aquasi-periodicfunction in(x, y).

Thus, in zero order we have obtained a family of QP solutions of the basic equation (1).
They exist on a corresponding dispersion submanifold, where both elementary components
have the same wave numbers{kj }.

In particular, the solution

u0(ϕ1, . . . , ϕ4) = cos(ϕ1 + ϕ3) cos(ϕ2 + ϕ4) + γ1 cos(ϕ1− ϕ3) cos(ϕ2 − ϕ4) (18)



Small-amplitude 2D patterns with nontrivial symmetry 2473

which generates the 2D QP solution

u0(x, y) = cos(k1 + k3)x cos(k2 + k4)y + γ1 cos(k1− k3)x cos(k2 − k4)y (19)

exists on the following dispersion surface:

F (+1,+1) ∩ F (−1,−1) :
4∑
j=1

k2
j = 1 k1k3 + k2k4 = 0 (20)

and the solution

u0(ϕ1, . . . , ϕ4) = cos(ϕ1− ϕ3) cos(ϕ2 + ϕ4) + γ2 cos(ϕ1 + ϕ3) cos(ϕ2 − ϕ4) (21)

which generates the 2D QP solution

u0(x, y) = cos(k1− k3)x cos(k2 + k4)y + γ1 cos(k1 + k3)x cos(k2 − k4)y (22)

exists on the dispersion surface

F (+1,−1) ∩ F (−1,+1) :
4∑
j=1

k2
j = 1 k1k3− k2k4 = 0. (23)

Remark. More strictly, the solutions (19) and (22) are QP almost for all values ofkj except
for a countable set

k2
1 =

−r2
(r1− r2)(1− r1r2) k2

2 =
r1

(r1− r2)(1− r1r2) k3 = r1k1 k4 = r2k2

r1, r2 are rational (24)

for the first type of solutions (19), and

k2
1 =

r2

(r1 + r2)(1 + r1r2)
k2

2 =
r1

(r1 + r2)(1 + r1r2)
k3 = r1k1 k4 = r2k2

r1, r2 are rational (25)

for the second type (22). For suchkj the solutions (19) and (22) becomestrictly periodic
in (x, y): since in these solutions the periods of the two terms in each space direction
(T (1)x = 2π/(k1 +k3) andT (2)x = 2π/(k1− k3); T (1)y = 2π/(k2 +k4) andT (2)y = 2π/(k2− k4))
are commensurable, there exist common periods for both the terms.

Note that if the numbersr1, r2 are treated as arbitrary numbers then relations (24), (25)
simply give us a parametric expression for the 2D dispersion manifolds (20), (23).

Let us return to the intersection of the dispersion surfacesF (+1,+1) andF (−1,−1). Due to
the form of the relation (16), it is natural to introduce angle variables to specify the vector of
the wave lattice on this dispersion subspace. In the case ofσ1 = σ2 they can be defined as
follows:

k1 + k3 = cosφ k1− k3 = cosψ

k2 + k4 = sinφ k2 − k4 = sinψ.

Then

k1 = cos

(
φ − ψ

2

)
cos

(
φ +ψ

2

)
k2 = cos

(
φ − ψ

2

)
sin

(
φ +ψ

2

)
(26)

k3 = − sin

(
φ − ψ

2

)
sin

(
φ +ψ

2

)
k4 = sin

(
φ − ψ

2

)
cos

(
φ +ψ

2

)
. (27)
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The numberskj thus defined always (for allφ andψ) satisfy the dispersion relation (20) that
arises at the intersection ofF (+1,+1) andF (−1,−1). Then the corresponding 2D QP solution can
be written in the simple form:

u0(x, y) = cos([cosφ]x) cos([sinφ]y) + γ cos([cosψ ]x) cos([sinψ ]y). (28)

In the case of intersection of the surfacesF (+1,−1) andF (−1,+1) the angle variables are
introduced as follows:

k1 + k3 = cosφ k1− k3 = cosψ

k2 − k4 = sinφ k2 + k4 = sinψ.

Thenkj are also defined by expressions (26), (27) except for the opposite sign of the right-hand
side of the formula fork4. The numberskj thus defined satisfy the dispersion relation (23) for
all φ andψ . Note that the corresponding QP solution is the same as in the first case: it is also
expressed by equation (28).

In what follows we restrict ourselves to thesecond simplest mode defined by
expressions (21), (23) and letγ2 = 1. Thus, as a solution of the zero-order equation (7)
we take a symmetric combination of elementary periodic solutionsu

(+1,−1)
0 + u(−1,+1)

0 .
Finally, let us introduce an additional notation. As is seen from expressions (26), (27),

k1 =K12 cosα k2 =K12 sinα k3 =K34 cosβ k4 =K34 sinβ (29)

where

K12 ≡ cos

(
φ − ψ

2

)
K34 ≡ − sin

(
φ − ψ

2

)
(30)

α ≡ φ +ψ

2
β ≡ π

2
− φ +ψ

2
. (31)

So, we can treat the numbersk1, k2 as components of the 2D wave ‘subvector’ that is a projection
of the full 4D vector of the wave lattice onto the plane(k1, k2); analogously, the numbersk3, k4

are components of the second 2D ‘subvector’ that is a projection of the full 4D vector onto the
plane(k3, k4). Note that

K2
12 +K2

34 = 1 β + α = π/2. (32)

3. Asymptotical expansions: first order. 2D spatial resonance

According to equation (8), in the next order inε � 1 the main mode (21), (23) generates the
following expression for the functionu1(ϕ1, ϕ2, ϕ3, ϕ4):

u1 = −1

2
− 1

4

{
cos 2(ϕ1− ϕ3)

1− 4(k1− k3)2
+

cos 2(ϕ1 + ϕ3)

1− 4(k1 + k3)2

}
−1

4

{
cos 2(ϕ2 + ϕ4)

1− 4(k2 + k4)2
+

cos 2(ϕ2 − ϕ4)

1− 4(k2 − k4)2

}
−1

4

{
cos 2(ϕ1− ϕ3) cos 2(ϕ2 + ϕ4)

1− 4(k1− k3)2 − 4(k2 + k4)2
+

cos 2(ϕ1 + ϕ3) cos 2(ϕ2 − ϕ4)

1− 4(k1 + k3)2 − 4(k2 − k4)2

}
−1

2

{
cos 2ϕ1 cos 2ϕ2

1− 4(k2
1 + k2

2)
+

cos 2ϕ1 cos 2ϕ4

1− 4(k2
1 + k2

4)
+

cos 2ϕ3 cos 2ϕ2

1− 4(k2
3 + k2

2)
+

cos 2ϕ3 cos 2ϕ4

1− 4(k2
3 + k2

4)

}
(33)

and two relations:

(k1− k3)(k
(1)
1 − k(1)3 ) + (k2 + k4)(k

(1)
2 + k(1)4 ) = 0

(k1 + k3)(k
(1)
1 + k(1)3 ) + (k2 − k4)(k

(1)
2 − k(1)4 ) = 0

(34)
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which arise as a result of eliminating secular terms in the right-hand side of equation (8). In
the space{(k1, k2, k3, k4)} these relations define a 2D manifold of admissible variations of the
4D vector(k1, k2, k3, k4), which belongs to the 2D manifold (23). This becomes evident if we
rewrite relations (34) in the following form:

k1k
(1)
1 + k2k

(1)
2 + k3k

(1)
3 + k4k

(1)
4 = 0 k3k

(1)
1 + k1k

(1)
3 = k4k

(1)
2 + k2k

(1)
4 . (35)

Expression (33) for the functionu1 provides the following two types of small divisors:

(I ) : (k1∓ k3)
2 = 1

4 (k2 ± k4)
2 = 1

4 (36)

(II ) : k2
1 + k2

2 = 1
4 k2

1 + k2
4 = 1

4 k2
3 + k2

2 = 1
4 k2

3 + k2
4 = 1

4. (37)

The first type of small divisor may be related with inner 1D spatial resonances (since the
projection of the resonance term is a function of one space variable only: eitherx or y),
whereas the second type may be related with inner 2D spatial resonance (since the projection
of the resonance term is a function of both the space variables) of waves in nonlinear media.

Let us first consider the 2D resonance related with the small divisork2
1 + k2

2 = 1
4. It may

occur if thethreedispersion manifolds intersect:

K2 ≡
4∑
j=1

k2
j = 1 k3k1 = k2k4 k2

1 + k2
2 = 1

4. (38)

This intersection takes place on a 1D resonance manifold in the 4D space{(k1, k2, k3, k4)}.
To eliminate that small divisor, let us redefine the zero approximation:

ũ0 = u0 + ρ cos 2ϕ1 cos 2ϕ2. (39)

Hereρ is a parameter (magnitude of the resonance mode), which will be defined below. The
change (39) leads to the following equation for the first approximation:

L̂0ũ1 = −u2
0 − 2ρu0 cos 2ϕ1 cos 2ϕ2 − 1

4ρ
2(1 + cos 4ϕ1 + cos 4ϕ2 + cos 4ϕ1 cos 4ϕ2)

+2(D(0)
13D

(1)
13 +D(0)

24D
(1)
24 )(u0 + ρ cos 2ϕ1 cos 2ϕ2). (40)

In the right-hand side of this equation secular terms (proportional tou0 and cos 2ϕ1 cos 2ϕ2)
can be produced by the termsu2

0 andρu0 cos 2ϕ1 cos 2ϕ2:

u2
0⇒ 1

2 cos 2ϕ1 cos 2ϕ2 + · · · ρu0 cos 2ϕ1 cos 2ϕ2⇒ 1
4ρu0 + · · · . (41)

Elimination of these terms gives us three relations, which include the magnitude of the
resonance modeρ:

(k1− k3)(k
(1)
1 − k(1)3 ) + (k2 + k4)(k

(1)
2 + k(1)4 ) = 1

4ρ

(k1 + k3)(k
(1)
1 + k(1)3 ) + (k2 − k4)(k

(1)
2 − k(1)4 ) = 1

4ρ

k1k
(1)
1 + k2k

(1)
2 =

1

16ρ
.

(42)

Then the solution of equation (40) takes the form

ũ1 = u′1−
1

2
ρ2 − 1

2
ρ2

{
cos 4ϕ1

1− (4k1)2
+

cos 4ϕ2

1− (4k2)2
+

cos 4ϕ1 cos 4ϕ2

1− (4k1)2 − (4k2)2

}
−1

2

{
cos(ϕ1− ϕ3) cos(3ϕ2 − ϕ4)

1− (k1− k3)2 − (3k2 − k4)2
+

cos(ϕ1 + ϕ3) cos(3ϕ2 + ϕ4)

1− (k1 + k3)2 − (3k2 + k4)2

}
−1

2

{
cos(3ϕ1− ϕ3) cos(ϕ2 − ϕ4)

1− (3k1− k3)2 − (k2 − k4)2
+

cos(3ϕ1 + ϕ3) cos(ϕ2 + ϕ4)

1− (3k1 + k3)2 − (k2 + k4)2

}
−1

2

{
cos(3ϕ1− ϕ3) cos(3ϕ2 − ϕ4)

1− (3k1− k3)2 − (3k2 − k4)2
+

cos(3ϕ1 + ϕ3) cos(3ϕ2 + ϕ4)

1− (3k1 + k3)2 − (3k2 + k4)2

}
.

(43)
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Hereu′1 is determined by formula (33) where the term with the eliminated small divisor should
be omitted.

Using the notation introduced at the end of the previous section, we find that

k1 = 1
2 cosα k2 = 1

2 sinα k3 =
√

3

2
sinα k4 =

√
3

2
cosα. (44)

on the resonance manifold (38). Then the 2D solution obtained as a projection of the
renormalized 4D resonance mode (39) can be written as follows:

ures
0 (x, y;α) = cos

[
cos

(
α +

π

3

)]
x cos

[
sin
(
α +

π

3

)]
y

+ cos
[
cos

(
α − π

3

)]
x cos

[
sin
(
α − π

3

)]
y + ρ cos[cosα] x cos[sinα] y.

(45)

It is QP w.r.t. bothx andy up to a countable set of exactly periodic 2D solutions that are
specified by the condition

√
3 tanα = r (r is a rational number). (46)

Note also that this solution has a parameter (α). In expressions (29), suppose that

K12 =K0
12 + εK(1)

12 K34 =K0
34 + εK(1)

34 (47)

α = α0 + εα(1) β = β0 + εβ(1) (48)

then we can write relations (42) in the form

k1k
(1)
1 + k2k

(1)
2 = 1

2K
(1)
12 =

1

16ρ

k3k
(1)
3 + k4k

(1)
4 =

√
3

2
K

(1)
34 =

1

2

(
ρ − 1

8ρ

)
β(1) = α(1).

(49)

These expressions explicitly show that the variations of the modules of the 2D vectors(k1, k2)

and(k3, k4) are specified by the parameterρ (the magnitude of the resonance mode), whereas
the differenceβ − α does not depend on it: in the first order inε � 1

β − α = β0 − α0 = π

2
− 2α0. (50)

Considering the location of small divisors in expressions (33) and (43) with respect to the
resonance manifold (38), it is easy to prove that their coincidence occurs for the following
values ofα: √

3 tanα = 0,± 1
3,±1,±3,±∞ (51)

which are associated with solutions that either are strictly periodic w.r.t.x andy, or represent
a degenerate case (k2 = k3 = 0, k1 6= 0, k4 6= 0 ork1 = k4 = 0, k2 6= 0, k3 6= 0).

Note also that the 2D resonances withj = 1, j ′ = 2 andj = 3, j ′ = 4 are equivalent in
the sense of pattern topology.

Now we describe how the QP 2D resonance solutionures
0 (x, y;α) (45) transforms as the

parameterα varies. Letρ = 1. At α = π/6 the solutionures
0 has a simple pattern: a regular

lattice with hexagonal symmetry.
In the ‘symmetric case’ (atα = π/4) this function can be written in the form

u(ξ, η) = cos(ξ) cos(η) + cos(S1ξ) cos(S2η) + cos(S2ξ) cos(S1η)

S1 =
√

3 + 1

2
S2 =

√
3− 1

2
ξ ≡ x

√
2 η ≡ y

√
2.

(52)
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Figure 1. The QP 2D resonance solution (α = π/4). Three squares selected in the pattern are
drawn in detail in figures 2(a)–(c).

Its pattern is characterized by the global symmetry axis of 12th order w.r.t. the origin (figure 1).
Since the function is QP, this pattern must approximately reproduce itself w.r.t. infinitely many
points of the plane; this is illustrated in figure 2.

At the same time, in the relief ofures
0 there are distinct local patches with approximate

order-5 symmetry. To recognize such fragments clearly, we introduced the following gradient
dynamical system:

ẋ = −∂u
res
0

∂x
ẏ = −∂u

res
0

∂y
(53)

and numerically found stationary points and lines of transition from local minima and maxima
to saddle-type points. This decoration of the pattern proved both a nontraditional symmetry
of its fragments and revealed analogues of the Ammann lattice [6,11].

Moreover, it occurred that around the points where the initial pattern with order-12
symmetry is almost reproduced there always exist areas inside which the order-5 symmetry
evidently prevails. A simple analysis of the interference between the symmetries of 12th and
5th order in the function (52) is presented in the appendix.

Finally, let us describe the behaviour of the pattern ifπ/6 < α < π/4. As α begins
moving fromπ/6 (the simple hexagonal lattice), on the background of this pattern there arises
another lattice; its cells have the same symmetry but much larger size. With further growth
of α this second lattice shrinks; the boundaries of its cells deform and gain their own inner
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Figure 2. QP almost-replication of the pattern. (a) The
pattern with exact 12-fold symmetry around the origin.
(b), (c) Two domains of the plane (see the two right-top
squares in figure 1) where this pattern is approximately
reproduced with different exactitude.

structure. This process is illustrated in figure 3. Asα varies fromπ/4 to π/3 the inverse
scenario takes place.

4. 1D spatial resonance

Consider another case: a 1D spatial resonance, which is generated by the small divisor
(k0

1 − k0
3)

2 = 1
4 in (33) (a 2D projection of the resonance term cos 2(ϕ1 − ϕ3) is actually

a function ofx only). The associated 1D resonance manifold in the 4D space{(k1, k2, k3, k4)}
is specified by the intersection of the three dispersion manifolds

k2
1 + k2

2 + k2
3 + k2

4 = 1 k3k1 = k2k4 (k1− k3)
2 = 1

4. (54)

As before, to eliminate that small divisor, we redefine the zero approximation:

ũ0 = u0 + ρ cos 2(ϕ1− ϕ3). (55)

This substitution leads to the following equation for the first approximation:

L̂0ũ1 = −u2
0 − 2ρu0 cos 2(ϕ1− ϕ3) + 1

2ρ
2(1 + cos 4(ϕ1− ϕ3))
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Figure 3. Level lines for the pattern in the case of 2D resonance on the stage of two overlapping
hexagonal patterns with different spatial size(α = 63◦).

−2(D(0)
13D

(1)
13 +D(0)

24D
(1)
24 )(u0 + ρ cos 2(ϕ1− ϕ3)). (56)

In the right-hand side of this equation the termsu2
0 andρu0 cos 2(ϕ1 − ϕ3) are secular

(proportional tou0 and cos 2(ϕ1− ϕ3)):

u2
0⇒ 1

4 cos 2(ϕ1−ϕ3) + · · · u0 cos 2(ϕ1−ϕ3)⇒ 1
2 cos(ϕ1−ϕ3) cos(ϕ2+ϕ4) + · · · .

(57)

Elimination of these terms also gives us three relations:

(k1− k3)(k
(1)
1 − k(1)3 ) + (k2 + k4)(k

(1)
2 + k(1)4 ) = 1

2ρ

(k1 + k3)(k
(1)
1 + k(1)3 ) + (k2 − k4)(k

(1)
2 − k(1)4 ) = 0

(k1− k3)(k
(1) − k(1)3 ) = 1

32ρ
.

(58)

Equation (56) has the following solution:

ũ1 = u′1−
1

4
ρ2 − 1

4
ρ2

{
cos 4ϕ1

1− (4k1)2
+

cos 4ϕ2

1− (4k2)2
+

cos 4ϕ1 cos 4ϕ2

1− (4k1)2 − (4k2)2

}
−1

2

{
cos(ϕ1− 3ϕ3) cos(ϕ2 − ϕ4)

1− (k1− 3k3)2 − (k2 − k4)2
+

cos(3ϕ1− ϕ3) cos(ϕ2 − ϕ4)

1− (3k1− k3)2 − (k2 − k4)2

+
cos 3(ϕ1− ϕ3) cos(ϕ2 − ϕ4)

1− 9(k1− k3)2 − (k2 − k4)2

}
. (59)
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Figure 4. Level lines for the pattern in the case of 1D resonance: alternating pieces with hexagonal
and quadrangular packs(α = 2◦) and stripes.

The 1D resonance manifold for this case is specified by the conditions

K12 = cosγ K34 = sinγ β = π

2
− α tan(γ + α) = ±

√
3. (60)

The 2D projection of the renormalized main mode (55) is QP up to a countable set of exactly
periodic solutions selected by the conditions

tan2 γ = r1r2 tan2 α = r1/r2 (61)

if r1 andr2 are related as follows:

r1

r2

(
1 + r2
1− r1

)2

= 3. (62)

The casesj = 1, j ′ = 3 andj = 2, j ′ = 4 are also equivalent in the sense of pattern
topology.

Numerically, in the case of 1D resonance the pattern also has quite a complicated structure.
Nevertheless, in the limit casesα→ 0 andα→ π/6 it also degenerates into a simple hexagonal
lattice. Asα is small, the pattern can be described as alternating macropatches that contain
close packs of elementary cells with either hexagonal or quadrangular symmetry, respectively
(figure 4). Asα grows further, the pattern becomes more complicated (figure 5).
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Figure 5. The same as figure 4, forα = 10◦ (a developed complicated pattern).

5. Conclusions

Thus, we have shown how the method of asymptotical expansions can be modified in order
to be effectively applied to a nonlinear scalar field theory (as an example, to the model with
quadratic nonlinearity); we have analysed the first iterations of this method. We have shown
that at this stage we already obtain QP 2D patterns which include patterns with approximate
nontrivial (5-fold) symmetry.

The same approach can be applied to a scalar field theory withcubicnonlinearity. Such
a model arises in various applications; see, for example, the book [19] and references therein.

In order to construct and describe QP 2D patterns we introduce a 4D space of phase
variables and look for strictly 2π -periodic solutions of the associated 4D equation in phase
variables. Such solutions are then ‘projected’ back onto the(x, y)-plane, where their images
are QP 2D solutions of the original equation.

The question of the stability of the QP patterns thus obtained lies beyond the scope of our
paper. On the general problem on stability of QP solutions we could send readers to the papers
of Moser [20] and Bridges [21], and references therein.

As we remarked in the introduction, further development in the study of QP patterns in
scalar field models may be related to a proper analysis of QP solutions of the equation

1u +3u = 0 (63)
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(1 is the Laplace operator inR2). This would allow us to construct a proper QP basis as a
set of QP eigenfunctions of the eigenvalue problem for this operator in the class of bounded
functions inR2. Such bases would be useful for an expansion of QP solutions of nonlinear
equations.

We have taken first steps in this direction. In particular, we have found that the main
renormalized mode in the case of 2D resonance corresponds (under certain conditions) to
one of the QP modes provided by the eigenvalue problem for the Laplace operator inR2;
moreover, the pattern of this QP mode includes patches with the same nontrivial symmetry as
that main mode. This allows us to suppose that for certain models of nonlinear field (solid
state) the nontrivial topology of small-amplitude patterns is essentially determined by the
pattern topology of QP modes of thelinear eigenvalue problem for the Laplace operator.
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Appendix. Interplay between approximate symmetries of 5th and 12th order in the 2D
resonance QP pattern

Consider the function (52) and its local exact and approximate symmetries in detail. This
function can be written as a sum of exponents:

u =
12∑
n=1

Cn exp(i[k(n)x x + k(n)y y]) Cn = 1
4 (64)

where(k(n)x , k
(n)
y ) are coordinates of 12 points in the plane of wave numbers; these points lie

on the unit circle and are equally spaced:

k(n)x = cos

[
2π

24
(2n + 1)

]
k(n)y = sin

[
2π

24
(2n + 1)

]
. (65)

If the original pattern is rotated by the angleβ around the point(0, 0) in the plane{x, y},
then its Fourier image (the set of 12 points) is rotated by the same angle around the point
(0, 0) in the plane{kx, ky}, andvice versa. Since the set (65) maps onto itself if rotated by the
angleβ = 2π/12 and all the points have equal ‘weights’Cn, the pattern possesses theexact
symmetry of 12th order relative the origin(0, 0).

The quasiperiodicity of function (52) implies that this pattern must reproduce itself with
various accuracy in the vicinity of infinitely many points in the plane{x, y}. This phenomenon
is illustrated in figures 2(a)–(c). On the other hand, as is clearly seen in these figures, there
exist many domains with apparent symmetry of the 5th order.

Let us try to analyse the ‘interference’ between the ‘far’ symmetry of 12th and ‘near’
symmetry of 5th order (figures 1 and 2 bear witness that these two symmetries prevail in the
pattern).

Shift the origin of coordinates to an arbitrary point with polar coordinates(r, φ). In the
plane of wave numbers this procedure changes weightsC1, . . . , C12; they become complex:

Cn H⇒ C̃n = Cn exp

(
ir cos

[
2π

24
(2n + 1)− φ

])
(66)

but the location of each point (65) remains intact. Fix the direction of the shift (the angleφ).
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At the point(r, φ) we introduce local polar coordinates(R, τ); then

u(R, τ) = 1

4

12∑
n=1

exp

(
ir cos

[
2π

24
(2n+1)− φ

])
exp

(
iR cos

[
2π

24
(2n+1)− τ

])
. (67)

Let us demand that the patternu approximately turns into itself being rotated by the angle
1τ around the point(r, φ). Such a rotation is accompanied by the rotation of all 12 points in
the Fourier plane{kx, ky} by the same angle. Hence, we can suppose that the following two
conditions are essential for a realization of some (local or global) symmetry of the pattern:

(A) the set of 12 equally spaced points on the circle must map onto itself with good accuracy
being rotated by angle1τ around the origin;

(B) the weight of each point must be approximately equal to the weight associated with its
‘image’ under the above rotation.

This means that each of 12 terms in (67) must map onto another term with more or less
accuracy:

exp

(
ir cos

[
2π

24
(2n1 + 1)− φ

])
exp

(
iR cos

[
2π

24
(2n1 + 1)− τ

])
≈ exp

(
ir cos

[
2π

24
(2n2 + 1)−φ

])
exp

(
iR cos

[
2π

24
(2n2 + 1)−τ−1τ

])
n2 = n2(n1,1τ) n1 = 1, . . . ,12.

(68)

It is natural to relate possible values of1τ (possible types of symmetries) with the solvability
of 12 approximate equations:

R

{
cos

[
2π

24
(2n1 + 1)− τ

]
− cos

[
2π

24
(2n2 + 1)− τ −1τ

]}
≈ 0

n2 = n2(n1,1τ) n1 = 1, . . . ,12
(69)

which express condition (A). There exist two cases:

• the expression in the curly brackets vanishesexactly; then the value ofR is not important,
so the symmetry can be global (or, at least, ‘far’);
• this expression vanishes onlyapproximately; in this case the left-hand side of (69) can be

made small if one requires smallness ofR.

Rewrite the left-hand side of (69) in the form

−2R sin
1

2

{
2π

12
(n1 + n2 + 1)− 2τ −1τ

}
sin

1

2

{
2π

12
(n1− n2) +1τ

}
. (70)

The first case corresponds to the angles1τ = 2π
12M, n2 − n1 = M; M = 1, 2, 3, 4, 6 (these

angles are associated with symmetries of 12th, 6th, 4th, 3rd and 2nd orders).
The second case works if we take1τ = 4π/5. Really, compare this rotation with the

rotation of the 12 points by the angle 5× 2π/12 (i.e., the shift by 5 points along the circle):

5
2π

12
− 4π

5
= π

30
� 1.

So we can suppose that the casen2 − n1 = 5 can also be associated with a symmetry of the
pattern (52) (obviously, it is the 5th-order symmetry), but this symmetry can be local only.

Now turn to condition (B) (approximate equality of the ‘weights’, which is necessary for
a good reproduction of the pattern upon rotation by the angle1τ ). As follows from (68), this
condition can be written in the form

r

2π
[G(n1)−G(n1 +M)] ≈ N(n1) ∈ Z

G(m) ≡ cos

[
2π

24
(2m + 1)− φ

]
n1 = 1, . . . ,12.

(71)
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Table A1.

P Q N1 N2 N3 r x = r/√2 xcorr xnum

2 1 3 4 1 4π 8.88 9.48 9.57
5 3 8 11 3 12π 26.66 26.14 26.15
7 4 11 15 4 16π 35.54 35.71 35.73

19 11 30 41 11 44π 97.74 97.62 97.61
26 15 41 56 15 60π 133.29 133.34 133.34

Solving these 12 equations provides a set of coordinates(rk, φk) of the ‘approximate
symmetry’ centres (the order of the symmetry is determined by the value ofn2− n1, which is
found on the first step).

As an example, let us search for symmetry centres that lie on the lineφ = π/4. Note that
if equations (71) are solved for some point(r∗, π/4), then these equations are thus solved for
all 12 points of kind(r∗, φm = 2π

24 (2m + 1)).
Let us start with the 5th-order approximate symmetry (n2 = n1 + 5), for which

G(n1) − G(n1 + 5) takes one of six possible values:{±
√

3+1
2 , ±

√
3+2
2 , ±1/2}. Thus, twelve

conditions (71) are reduced to three approximate equations for the continuous variabler and
three integers(N1, N2, N3):

√
3 + 1

2
≈ 2π

r
N1

√
3 + 2

2
≈ 2π

r
N2

1

2
≈ 2π

r
N3. (72)

The solvability of this system is directly related to an approximation of the irrational number√
3 by rational ones. Let

√
3 ≈ P/Q, P,Q ∈ Z. Then the solution of the system (72) has

the form

N1 = P +Q N2 = P + 2Q N3 = Q r = 4πQ. (73)

As rational approximationsP/Q let us take a sequence of so-called ‘convergents of a
continued fraction’, which are generated when the expansion of

√
3 into a continued fraction

√
3= 1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + · · ·

is cut at subsequent levels:

2
1,

5
3,

7
4,

19
11,

26
15,

71
41, . . . H⇒

√
3. (74)

Corresponding values ofN1,N2,N3, andr are presented in table A1.
Note that the above rational approximations are not unique; for example, since

√
3 =

3/
√

3, the number
√

3 can be approximated by rational fractions 3Q/P with the sameP,Q
as above.

It follows from (66) that, asr varies, each weight coefficientC̃n moves in the complex plane
along the circle with constant ‘velocity’, which depends onn. Looking at the mapping (68)
and equation (71) we see that for the values ofr presented in the table the phase differences
betweenC̃n and C̃n+5 simultaneously (i.e., for all 12 such pairs) become very close to 2π

(multiplied by the integersN1,N2, orN3).
Numerical analysis proves that all the points(r, φ/4) with r taken from above table

coincide (with very good accuracy) with centres of patches that are associated with the
symmetry of 5th order (compare values ofx = r/√2 with numerical values of this coordinate
xnum; see also figures 1 and 2); the larger areP,Q, the better is our evaluation of coordinater
of the corresponding symmetry centre.
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In the case of 12th-order symmetry expressionsG(n1)−G(n1 + 1) take one of six values:
{±
√

3−1
2 ,±

√
3−2
2 ,± 1

2}. In this case we get the following three approximate equations:
√

3− 1

2
≈ 2π

r
N1

2−√3

2
≈ 2π

r
N2

1

2
≈ 2π

r
N3. (75)

Substituting the rational fractionP/Q, P,Q ∈ Z for
√

3, we find

N1 = P −Q N2 = 2Q− P N3 = Q r = 4πQ. (76)

Thus, we have encountered an intriguing fact: the points of the plane(r, φ) that were found as
probable centres of the approximate 5th-order symmetry are at the same time probable centres
of the approximate 12th-order symmetry. Which symmetry ‘wins’?

Let us suppose that it is the symmetry for which the weight coefficientsC̃n are reproduced
better upon rotation by angle 2π/12· (n2−n1); formally, it is the symmetry that minimizes the
average deviationε of an argument of the weight coefficient divided by 2π from an integer:

ε = 1

12

12∑
n1=1

∣∣∣ r
2π
(G(n1)−G(n2))− int

[ r
2π
(G(n1)−G(n2))

]∣∣∣ (77)

where int[ ] means taking the nearest integer.
So we should compare the average deviationε for the 5th- and 12th-order symmetries.

Before we proceed, note that the coordinatesr of the ‘symmetry centres’ that were calculated
above contain an additional error related with the rational approximations used instead of exact√

3. To evaluate the deviationε with proper accuracy, we should try to reduce the deviation
taking into account this error. Let1 = 1(P,Q)be an error in the coordinater of the symmetry
centre:1 = r − 4πQ, and letδ = δ(P,Q) be an error of the rational approximation of

√
3:

δ = √3− P
Q

.
Calculating the deviationε for each equation in the triplets (72) and (75) in linear

approximation w.r.t.1 andδ and averaging, we find that the minimum of the average deviation
for the first case equals

min
1
ε(5)average=

2

3
δ

Q2

P + 2Q
(78)

and is attained at1min = −4πδ Q2

P+2Q .
So, we have simultaneously calculated a correction for the coordinate of the 5th-

approximate symmetry centres. It is in good accordance with numerical data: compare
the corrected valuesxcorr = x + 1min/

√
2 with the numerical valuesxnum in table

A1.
In the case of 12th-order symmetry we find that

min
1
ε(12)

average= 2
3Qδ 1min = 0 (79)

so any additional shift inr does not allow one to reduce the deviation.
Thus, for the ratio of the deviations for the symmetries of 5th and 12th order we find:

min
1
ε(5)average/min

1
ε(12)

average∼
Q

P + 2Q
(80)

so the deviation for the shiftn2 − n1 = 5 is always several times less than forn2 − n1 = 1.
Say, forQ = 3, P = 5 this ratio equals3

11; for large numbersP,Q it tends to 1/(2+
√

3) ∼ 1
4.

This evaluation was confirmed by our numerical analysis.
Hence, we have shown that, for not too largeR, the conditions for the 5th-order symmetry

to appear are always more ‘favourable’ than those for the 12th-order symmetry. The numerical
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Figure A1. Local patterns with approximate 5-fold symmetry. Graphs (c) and (d) are the central
parts of the patterns with good ‘far’ 12-fold symmetry presented in figures 2(b)–(c).

simulation proves that at the points with smallP,Q, where the deviationε for the 12th-order
symmetry is still too large, its value for the 5th-order symmetry is already quite small; and,
really, inside domains withR < 4 around such points we see apparent local patterns with
this symmetry (in spite of the fact that condition (A) is satisfied for angle1τ = 4π/5 only
approximately). Such domains are the main elements generating the global pattern of our
function. At the points withP andQ large enough (actually, already forP = 7,Q = 4)
the deviation for the 12th-order symmetry also becomes acceptably small. In such cases we
observe much larger domains with the 12th-order symmetry; and the better is the rational
approximation of

√
3, the more similar is the local pattern to the pattern around the origin

(figures 1 and 2) with exact 12th-order symmetry.
But the ratio of the deviations isalwaysabout1

4, so at the vicinity of the centre of such a
pattern the 5th-order symmetry nevertheless prevails and suppresses the 12th-order symmetry!
As P andQ grow, the ‘near’ 5th-order symmetry around the centre of the local pattern with
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‘far’ 12th-order symmetry becomes more and more exact; this phenomenon is clearly seen in
figures A1(a)–(d).
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